Credit scoring in banks and financial institutions via data mining techniques: A literature review
نویسندگان
چکیده
This paper presents a comprehensive review of the studies conducted in the application of data mining techniques focus on credit scoring from 2000 to 2012. Yet, there isn‟t adequate literature reviews in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct online journal database. The studies are categorized and classified into enterprise, individual and small and midsized (SME) companies credit scoring. Data mining techniques are also categorized to single classifier, Hybrid methods and Ensembles. Variable selection methods are also investigated separately because there is a major issue in a credit scoring problem. The findings of this literature review reveals that data mining techniques are mostly applied to an individual credit score and there is inadequate research on enterprise and SME credit scoring. Also ensemble methods, support vector machines and neural network methods are the most favorite techniques used recently. Hybrid methods are investigated in four categories and two of the frequently used combinations are “classification and classification” and “clustering and classification”. This review of literature analysis provides scope for future research and concludes with some helpful suggestions for further research.
منابع مشابه
Credit scoring in banks and financial institutions via data mining techniques: A literature review
This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...
متن کاملUsing data mining to improve assessment of credit worthiness via credit scoring models
Credit scoring model have been developed by banks and researchers to improve the process of assessing credit worthiness during the credit evaluation process. The objective of credit scoring models is to assign credit risk to either a ‘‘good risk’’ group that is likely to repay financial obligation or a ‘‘bad risk’’ group who has high possibility of defaulting on the financial obligation. Constr...
متن کاملThe Effect of Liquidity and Efficiency on Credit Risk of Development Banks
The financial system has an important role in health, growth and success of the country. Financial institutions include financial markets and institutions, as intermediary institutions, play an effective role in supply, Equipping and allocating of financial resources. Recent crises in the country's banking system have become a national challenge due to increased outstanding claims and liquidity...
متن کاملPersonal Credit Score Prediction using Data Mining Algorithms (Case Study: Bank Customers)
Knowledge and information extraction from data is an age-old concept in scientific studies. In industrial decision-making processes, the application of this concept gives rise to data-mining opportunities. Personal credit scoring is an ever-vital tool for banking systems in order to manage and minimize the inherent risks of the financial sector, thus, the design and improvement of credit scorin...
متن کاملIdentifying patterns of the dynamic credit risk of banks customers and financial institutions: case study- an Iranian bank
Credit risk assessment has always been one of the most important concerns of banks. Widely used models such as financial models have been used to assess credit risk so far. But increasing non-performing loans indicates that today these models cannot assess the credit risk of customers. Inconstant and uncertain environmental, social and political factors affect customer behavior and change custo...
متن کامل